H. Geometry Summer Math Packet

Due by the 1st week of school.

These are all review topics of Algebra 1 and should be known at mastery level.

These topics will be tested the first week of school.

Simplify the following.

- 1. $4\sqrt{7} + 3\sqrt{5} + 5\sqrt{7}$ 2. $5\sqrt{10} 3\sqrt{5} + 4\sqrt{10}$
- 3. $4\sqrt{10} \sqrt{10}$ 4. $\sqrt{6}(-2\sqrt{2}-\sqrt{3})$
- 5. $\sqrt[3]{48p^2q^3r^4}$ 6. $\sqrt{x^5y^4}$
- 7. $\sqrt{10}(\sqrt{2}+4)$ 8. $-3\sqrt{6p^2} \cdot 4\sqrt{12p}$
- 9. $5\sqrt{3x}\left(2\sqrt{x}-3\sqrt{3x^3}\right)$ 10. $\frac{\sqrt{32}}{\sqrt{2}}$

11.
$$\frac{4\sqrt{15}}{4\sqrt{10}}$$
 12. $\frac{2\sqrt{2}}{\sqrt{3}}$

Perry High School Math Department

13.
$$\frac{-2}{2\sqrt{3}}$$
 14. $-2x \cdot -4x^4 y^3$

 15. $3v^4 \cdot 4u^2$
 16. $-3yx^3 \cdot -3yx^4 \cdot -3x^4$

 17. $3u^2 \cdot -2v^2$
 18. $(-2)^2$

 19. $(4^2)^4$
 20. $(2^3)^3$

 21. $((-2)^3)^2$
 22. $(-x)^3$

 23. $(-2n)^2$
 24. $(3b^4)^4$

 25. $(-3v^2)^4$
 26. $(-4xy)^4$

 27. $(-4xy^3)^3$
 28. $(-4y^3)^4$

Distribute & simplify:

29.
$$-8y(5y^2 - 3)$$
 30. $(5a - 2)(-2a + 3)$

31.
$$(3x + 2)(2x - 2)$$
 32. $(2x - 2)(3x + 3)(4x - 4)$

Factor completely (Remember to Factor by Grouping if necessary or find a GCF):

33.
$$x^2 + 2x - 63$$
 34. $y^2 + 15y - 3$

35.
$$12x - 4$$
 36. $9t^2 + 9t - 10$

37.
$$y^2 + 12y + 36$$
 38. $r^2 - 4$

$$39. t^2 - 25 40. a^2 + 18a + 80$$

41.
$$2x^2 + 7x + 6$$
 42. $6x^2 - 5x - 1$

43. $5x^2 + 15x - 20$	44. $25x^2 - 49y^2$
-----------------------	---------------------

- 45. $62x^2 + 18x$ 46. $3x^2 + 9x 15$
- 47. $10p^2 55p + 60$
- 48. Is (-2, 4) a solution to the following system?
 - 2x 2y = 8x + y = 4
- 49. Is (2, 1) a solution to the following system?
 - 4x + y = 93x + 14y = 20

50. Find the equation of the line that is parallel to $y = -\frac{1}{2}x + 4$ and passes through (-2, 8).

51. Find the equation of the line that is parallel to 2x + 3y = 6 and passes through (4, 1).

For **# 52-55**, determine:

a) if the lines are parallel, perpendicular, intersecting but not perpendicular, or coinciding.

b) how many solutions the system has.

52.	2x - 3y = -12	53.	8x - 4y = 12
	-6x + 9y = 36		y = 2x - 4

54.
$$2x - 4y = -16$$

-x + 2y = 8
55. $-6x + 2y = -2$
y = $-4x - 8$

Solve using substitution.

56.
$$y = x + 6$$

 $y = -4x - 9$
57. $8x + y = 2$
 $4x + 4y = 8$

Solve using elimination.

58.
$$\begin{array}{c} -x+5y = -13 \\ -4x-5y = -2 \end{array}$$
59.
$$\begin{array}{c} 3x+5y = -23 \\ -9x-8y = 20 \end{array}$$

Solve using any method you choose.

60.
$$\begin{aligned} 4x - 9y &= -5 \\ 8x - 10y &= 30 \end{aligned}$$
61.
$$\begin{aligned} 10x - 6y &= 12 \\ 5x - 3y &= 6 \end{aligned}$$

62.
$$\frac{-16x - 2y = -12}{8x + y = 6}$$
63.
$$\frac{5x - 3y = -24}{8x + y = -21}$$

Solve the Application Problem

64. Nicole and Micaela are selling cheesecakes for a fundraiser. Customers can buy chocolate cheesecakes and cherry cheesecakes. Nicole sold 7 chocolate and 8 cherry cheesecakes for a total of \$122. Micaela sold 7 chocolate and 1 cherry cheesecakes for a total of \$52. Find the cost of a chocolate cheesecake and a cherry cheesecake.

SYSTEM OF EQUATIONS:

Chocolate: _____

Cherry:_____